翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hahn-Kolmogorov theorem : ウィキペディア英語版
Hahn–Kolmogorov theorem
In mathematics, the Hahn–Kolmogorov theorem characterizes when a finitely additive function with non-negative (possibly infinite) values can be extended to a ''bona fide'' measure. It is named after the Austrian mathematician Hans Hahn and the Russian/Soviet mathematician Andrey Kolmogorov.
==Statement of the theorem==
Let \Sigma_0 be an algebra of subsets of a set X. Consider a function
:\mu_0\colon \Sigma_0 \to()
which is ''finitely additive'', meaning that
: \mu_0\left(\bigcup_^N A_n\right)=\sum_^N \mu_0(A_n)
for any positive integer ''N'' and A_1, A_2, \dots, A_N disjoint sets in \Sigma_0.
Assume that this function satisfies the stronger ''sigma additivity'' assumption
: \mu_0\left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu_0(A_n)
for any disjoint family \ of elements of \Sigma_0 such that \cup_^\infty A_n\in \Sigma_0. (Functions \mu_0 obeying these two properties are known as pre-measures.) Then,
\mu_0 extends to a measure defined on the sigma-algebra \Sigma generated by \Sigma_0; i.e., there exists a measure
:\mu \colon \Sigma \to()
such that its restriction to \Sigma_0 coincides with \mu_0.
If \mu_0 is \sigma-finite, then the extension is unique.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hahn–Kolmogorov theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.